Identification of thyroid hormone response elements in the human fatty acid synthase promoter.
نویسندگان
چکیده
To investigate the regulation of the human fatty acid synthase gene by the thyroid hormone triiodothyronine, various constructs of the human fatty acid synthase promoter and the luciferase reporter gene were transfected in combination with plasmids expressing the thyroid hormone and the retinoid X receptors in HepG2 cells. The reporter gene was activated 25-fold by the thyroid hormone in the presence of the thyroid hormone receptor. When both the thyroid hormone and the retinoid X receptors were expressed in HepG2 cells, there was about a 100-fold increase in reporter gene expression. 5'-Deletion analysis disclosed two thyroid hormone response elements, TRE1 (nucleotides -870 to -650) and TRE2 (nucleotides -272 to -40), in the human fatty acid synthase promoter. The presence of thyroid hormone response elements in these two regions of the promoter was confirmed by cloning various fragments of these two regions in the minimal thymidine kinase promoter-luciferase reporter gene plasmid construct and determining reporter gene expression. The results of this cloning procedure and those of electrophoretic mobility shift assays indicated that the sequence GGGTTAcgtcCGGTCA (nucleotides -716 to -731) represents TRE1 and that the sequence GGGTCC (nucleotides -117 to -112) represents TRE2. The sequence of TRE1 is very similar to the consensus sequence of the thyroid hormone response element, whereas the sequence of TRE2 contains only a half-site of the thyroid hormone response element consensus motif because it lacks the direct repeat. The sequences on either side of TRE2 seem to influence its response to the thyroid hormone and retinoid X receptors.
منابع مشابه
Transformation of Rapeseed (Brassica napus L.) Plants with Sense and Antisense Constructs of the Fatty Acid Elongase Gene
The biosynthetic pathways of saturated and unsaturated fatty acids consist of many steps controlled by various enzymes. One of the methods for improving oil quality is to change the fatty acid profile through genetic manipulation which requires isolation and characterization of the genes and other cis-acting elements, such as the promoter, involved in fatty acid biosynthesis. b-ketoacyl-CoA syn...
متن کاملThyroid hormones directly activate the expression of the human and mouse uncoupling protein-3 genes through a thyroid response element in the proximal promoter region.
The transcription of the human UCP3 (uncoupling protein-3) gene in skeletal muscle is tightly regulated by metabolic signals related to fatty acid availability. However, changes in thyroid status also modulate UCP3 gene expression, albeit by unknown mechanisms. We created transgenic mice bearing the entire human UCP3 gene to investigate the effect of thyroid hormones on human UCP3 gene expressi...
متن کاملLipid Metabolism and Thyroid Hormone : a Review
Thyroid hormone , secreted by thyroid gland have a profound effects on the lipid metabolism. It exerts its action mainly by its genomic action. It diffuses from the extracellular fluid across the plasma membrane and go directly into the nucleus. The cognate receptor binds to the thyroid hormone response element [TRE].It regulates the gene expression of key enzymes involved in lipid metabolism b...
متن کاملBoth 3,5-Diiodo-L-Thyronine and 3,5,3′-Triiodo-L-Thyronine Prevent Short-term Hepatic Lipid Accumulation via Distinct Mechanisms in Rats Being Fed a High-Fat Diet
3,3',5-triiodo-L-thyronine (T3) improves hepatic lipid accumulation by increasing lipid catabolism but it also increases lipogenesis, which at first glance appears contradictory. Recent studies have shown that 3,5-diiodothyronine (T2), a natural thyroid hormone derivative, also has the capacity to stimulate hepatic lipid catabolism, however, little is known about its possible effects on lipogen...
متن کاملRetinoic acid-mediated transcription and maturation of SREBP-1c regulates fatty acid synthase via cis-elements responsible for nutritional regulation.
A region of the rat FAS (fatty acid synthase) promoter has been defined as being responsible for RA (retinoic acid) responsiveness. The defined promoter region is devoid of canonical RA-response elements but contains cis-elements binding generalized and specific transcription factors that mediate the dietary response of FAS. Our results are consistent with SREBP-1c (sterol-regulatory-element-bi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 95 21 شماره
صفحات -
تاریخ انتشار 1998